Evaluation of moldable, in situ hardening calcium phosphate bone graft substitutes.
نویسندگان
چکیده
OBJECTIVE Moldable in situ self-stabilizing and hardening bone graft materials facilitate handling and may be suitable for membrane-free bone regeneration methods. This study aimed to compare two moldable synthetic calcium phosphate materials in a rabbit calvarial defect model. METHOD In 12 New Zealand white rabbits, four evenly distributed 6 mm diameter defects were drilled in the calvarial bone. Three filler materials were randomly applied to 48 defects: an in situ hardening polylactide-coated ß-tricalcium phosphate (TCP), an in situ hardening polylactide-coated biphasic calcium phosphate (BCP), and a granular deproteinized bovine bone matrix (DBBM, positive control). One defect remained untreated and served as a negative control. Six animals were sacrificed after 4 weeks, and the remaining animals were sacrificed after 16 weeks. Biocompatibility, bone graft substitute integration and resorption, bone formation, defect bridging, and height of reconstructed hard tissue were assessed histologically and histomorphometrically. RESULTS All tested materials showed good biocompatibility. Semi-quantitative analysis and pair-wise comparison suggested that BCP was more efficient in centripetal bone formation when compared with TCP. After 4 weeks, significantly more bone had formed in the defects treated with either TCP or BCP materials compared with the untreated sites. BCP and DBBM did not show macroscopic signs of degradation, whereas the TCP material was partially resorbed after 16 weeks. Otherwise, no major differences were detected between the three materials. CONCLUSION The moldable, synthetic calcium phosphates are safe and suitable bone graft substitutes with outcomes that are comparable to the control material.
منابع مشابه
Porous Strontium-Containing Ceramic Granules as Bone Graft Substitutes
We have synthesized calcium phosphate-based, strontium (Sr) containing, porous ceramic granules for use as bone graft substitutes. The granules with a particle size between 1 and 2 mm and a (macro)-pore size around 200–500μm were mixed with a fibrin sealant to form a moldable composite material. The starting material with Sr contents between 0 and 100% Sr were precipitated from Ca/Sr solutions ...
متن کاملRidge preservation using an in situ hardening biphasic calcium phosphate (β-TCP/HA) bone graft substitute—a clinical, radiological, and histological study
BACKGROUND Post-Extraction ridge preservation using bone graft substitutes is a conservative technique to maintain the width of the alveolar ridge. The objective of the present study was to evaluate an in situ hardening biphasic (HA/β-TCP) bone graft substitutes for ridge preservation without primary wound closure or a dental membrane. METHODS A total of 15 patients reported for tooth extract...
متن کاملHydrogels in calcium phosphate moldable and injectable bone substitutes: Sticky excipients or advanced 3-D carriers?
The combination of hydrogels and calcium phosphate particles is emerging as a well-established trend for bone substitutes. Besides acting as binders for the inorganic phase, hydrogels within these hybrid materials can modulate cell colonization physically and biologically. The influence of hydrogels on the healing process can also be exploited through their capability to deliver drugs and cells...
متن کاملEvaluation of Compressive Mechanical Properties of the Radial Bone Defect Treated with Selected Bone Graft Substitute Materials in Rabbit
Objective- To determine the effect of selected bone graft on the compression properties of radialbone in rabbit.Design- Experimental in vivo study.Animals- A total of 45 adult male New Zealand white rabbits.Procedures- The rabbits were anesthetized and a one-cm-full thickness piece of radial bone wasremoved using oscillating saw in the all rabbit. The rabbits were divided into 5 groups on theba...
متن کاملLateral alveolar ridge augmentation procedure using subperiosteal tunneling technique: a pilot study
Background: In this research article, we evaluate the use of sub-periosteal tunneling (tunnel technique) combined with alloplastic in situ hardening biphasic calcium phosphate (BCP, a compound of β-tricalcium phosphate and hydroxyapatite) bone graft for lateral augmentation of a deficient alveolar ridge. Methods: A total of 9 patients with deficient mandibular alveolar ridges were included in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical oral implants research
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2013